Elementary maths for GMT

Algorithm analysis Part II

Algorithms, Big-Oh and Big-Omega

- An algorithm has a $O(\cdots)$ and $\Omega(\cdots)$ running time
- By default, we mean the worst case running time
- A worst case $O(\cdots)$ running time is a statement about all possible inputs
- A worst case $\Omega(\cdots)$ running time is a statement about one input

Algorithms, Big-Oh and Big-Omega

- Consider the following BubbleSort algorithm

```
Algorithm BubbleSort(X)
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output the sorted version in array \(\boldsymbol{X}\)
    for \(i \leftarrow 1\) to \(n-1\) do
        \(j \leftarrow i\)
        while \((j>0)\) and \(X[j]<X[j-1]\) do
        \(\operatorname{swap} X[j]\) and \(X[j-1]\)
        \(j \leftarrow j-1\)
    return \(X\)
```


Algorithms, Big-Oh and Big-Omega

- If \boldsymbol{X} is already sorted, then Bubblesort runs in $O(n)$ time
- If \boldsymbol{X} is sorted in reverse order, then BubbleSort runs in $O\left(n^{2}\right)$ time
- If \boldsymbol{X} is in any other permutation, the running time is somewhere in between
$>$ The worst case running time is $O\left(n^{2}\right)$

Algorithms, Big-Oh and Big-Omega

- If \boldsymbol{X} is already sorted, then Bubblesort runs in $\boldsymbol{\Omega}(n)$ time
- we can claim $\Omega(n)$ running time in the worst case
- If \boldsymbol{X} is sorted in reverse order, then BubbleSort runs in $\boldsymbol{\Omega}\left(n^{2}\right)$ time
- we can claim $\Omega\left(n^{2}\right)$ running time in the worst case (which is a stronger claim)
- Since the running time is also $O\left(n^{2}\right)$ in the worst case, we cannot find an even worse input

Algorithms, Big-Oh and Big-Omega

- Since the worst case running time is $\boldsymbol{\Omega}\left(n^{2}\right)$ and $O\left(n^{2}\right)$, the running time is also $\Theta\left(n^{2}\right)$ in the worst case
- The worst case running time bound is tight if the upper bound and lower bound match
- Is it possible that an algorithm has a worst case running time of $\boldsymbol{\Omega}\left(n^{2}\right)$ and $O\left(n^{3}\right)$?

Algorithms, Big-Oh and Big-Omega

- Since the worst case running time is $\boldsymbol{\Omega}\left(n^{2}\right)$ and $O\left(n^{2}\right)$, the running time is also $\Theta\left(n^{2}\right)$ in the worst case
- The worst case running time bound is tight if the upper bound and lower bound match
- Is it possible that an algorithm has a worst case running time of $\boldsymbol{\Omega}\left(n^{2} \log n\right)$ and $O\left(n^{2}\right)$?
$\Omega\left(n^{2} \log n\right)$

Basic algorithm problems

- The problem of sorting a set of numbers is perhaps the most fundamental algorithmic problem
- Insertionsort and BubbleSort are simple incremental algorithms that take $\Theta\left(n^{2}\right)$ time in the worst case
- MergeSort and Quicksort are based on a divide-andconquer approach and take $\Theta(n \log n)$ time in the worst case
- CountingSort takes $\Theta(n)$ time but only works for integers that are not too large
- Is it possible that any sorting algorithm is even faster than $\Theta(n)$ time?

Basic algorithm problems

- The problem of storing a set of numbers for efficient searching is the most fundamental data structuring problem
- A sorted array allows for binary search, which take $\Theta(\log n)$ time (binary search is a search algorithm for a single number in a sorted set)
- In an unsorted array, searching cannot be faster than $\Theta(n)$ time
- Hash tables are specifically organized arrays that allow searching in $\Theta(1)$ time in practice, but not as a worst case bound

Recall: important functions

Function	Time	Usage in
Constant	$O(1)$	initialization of a variable
Logarithmic	$O(\log n)$	searching in a sorted set
Linear	$O(n)$	A full scan over the input
N-Log-N	$O(n \log n)$	sorting a set
Quadratic	$O\left(n^{2}\right)$	nested loops
Cubic	$O\left(n^{3}\right)$	one deeper nesting
Exponential	$O\left(2^{n}\right)$	all subsets of a set
Factorial	$O(n!)$	all ordering of a set

Different steps in an algorithm

- Consider the problem: given a set of n numbers, are any two equal?
- Example: 4, 6, 14, 3, 7, 97, 56, -4, 89, 34, 8, 14, -23, 88
- Solution 1 - The intuitive way: consider all pairs of numbers and test each pair
- Result in a $O\left(n^{2}\right)$ algorithm (nested loops)
- Solution 2 - The sort\&search approach: sort the numbers with MergeSort or QuickSort (step 1) and then scan (step 2) to see if two adjacent numbers are equal
- Step 1 takes $O(n \log n)$ time and step 2 takes $O(n)$ time
- In total $O(n \log n)+O(n)=O(n \log n+n)=O(n \log n)$ time

Different steps in an algorithm

- An algorithm has different steps if it has subtasks and each subtask is completely finished before the next one begins
- We analyze each subtask separately and add up their running times
- With Big-Oh notation and removal of constants and lowerorder terms, this implies that the most time expensive subtask determines the efficiency of the whole algorithm

Different steps in an algorithm

- Compare the two following algorithms

Algorithm Loops $1(X)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output irrelevant
for $i \leftarrow 1$ to n do
some computations
for $j \leftarrow 1$ to n do
some computations
return something

```
Algorithm Loops2(X)
    Input array }\boldsymbol{X}\mathrm{ of }\boldsymbol{n}\mathrm{ integers
    Output irrelevant
    for i}\leftarrow1\mathrm{ to }\boldsymbol{n}\mathrm{ do
        some computations
    for }\boldsymbol{j}\leftarrow1\mathrm{ to }\boldsymbol{n}\mathrm{ do
        some computations
    return something
```

- What is their running time?

More example problems

- Given a set of n numbers, can we split them in two subsets with the same summed value?
- set: -18, 4, 22, 14, 2, 7, 97, 56, -6, 88, 34, 9, 17, -23, 69
- total sum is 372 , half is 186
- One solution: -23,2,22,88,97 and -18,-6,4,7,9,14,17,34,56,69

Another nested-loops example

- Analyze the following algorithm

```
Algorithm SumOccurs(X,m)
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers and an integer \(\boldsymbol{m}\)
    Output true if \(X[i]+X[j]=m\) for some \(i!=j\)
    MergeSort(X)
    \(i \leftarrow 0\)
    \(j \leftarrow n-1\)
    while \((i<j)\) do
        while \((X[i]+X[j]>m)\) do \(j \leftarrow j-1\)
        if \((X[i]+X[j]=m)\) then return true
        \(i \leftarrow i+1\)
    return false
```


Another nested-loops example

- Nested loops (both over the input size) do not always give a worst case quadratic running time
- When not, you need a different argument to bound the number of times the inner loop is executed
- This involves understanding what the algorithm precisely does
- If you designed the algorithm, you (should) understand what it does
- Otherwise, applying the algorithm to some example input helps to understand how the algorithm works

Graphs and representations

- A graph $G=(V, E)$ consists of a set V of vertices and a set E of edges
- Abstractly speaking, vertices are elements and edges are pairs of elements
- One can draw a graph by giving coordinates to the vertices, but any graph exists without coordinates
- Example

$$
\begin{aligned}
-V= & \{1,2,3,4,5,6,7\} \\
-E= & \{(1,2),(1,3),(2,3),(2,5), \\
& (3,5),(4,5),(3,6),(3,7),(5,6)\}
\end{aligned}
$$

Graphs and representations

- The (input) size of a graph is expressed as the number of vertices and the number of edges: $|V|=n$ and $|E|=m$
- Question: what is the minimum and maximum number of edges a graph with n vertices can have?

Graphs and representations

- A graph $G=(V, E)$ is planar if it can be drawn in the plane without any edge-edge intersections
- Is this graph planar?

- For planar graphs, it is known that $m \leq 3 n-5$
- In other words, the number of edges of a planar graph with n vertices is $O(n)$
- Big-Oh notation is not used only for running time statements

Graphs and representations

- Subdivisions of the plane can be represented with graphs, if we give coordinates to each vertex
- Road networks are also graphs that have vertices with coordinates

Graphs and representations

- A common representation of a graph is the adjacency matrix, a $n \times n$ matrix of zeroes and ones with a one at (i, j) if and only if (i, j) is an edge in E

Graphs and representations

- Some questions
- Suppose that a graph G with n vertices and m edges is given. How much storage space does the adjacency matrix representation of G need? What if G is planar?
- Can we use Big-Oh notation to state this?
- Is the adjacency matrix representation suitable for representing planar graphs?

Graphs and representations

- A different common representation for graphs is the adjacency list representation
- It consists of an array $A[1 \cdots n]$, with one entry for each vertex, with access to a list of neighbors of that vertex

$$
\begin{aligned}
-V= & \{1,2,3,4,5,6,7\} \\
-E= & \{(1,2),(1,3),(2,3),(2,5) \\
& (3,5),(4,5),(3,6),(3,7),(5,6)\}
\end{aligned}
$$

Graphs and representations

- What are the storage requirements of an adjacency list representation of a graph G with n vertices and m edges?
- $O(n+m)$
- Do we really need the n and the m in the storage bound (for example, would $O(n)$ or $O(m)$ be correct)?

- We really need both

- a graph with n vertices and $\frac{n(n-1)}{2}$ edges (all possible edges) needs $\Theta(m)=\Theta\left(n^{2}\right)$ storage, and this is not $O(n)$
- a graph with n vertices but no edges needs $\Theta(n)$ storage, and this is not $O(m)$ since $m=0$

Graphs and representations

- What are the advantages and the disadvantages of the adjacency matrix and adjacency list representations?

Graphs and representations

- Graphs often have weighted edges
- The weight may represent the distance between the incident vertices, the travel time, the capacity, the cost ...
- In an adjacency matrix, we can simply store the weight of an edge (i, j) in the matrix (if no edge is present, we need to use a special value that does not occur as a weight)
- In an adjacency list, we store twice the weight of an edge
- with j in the list of i
- with i in the list of j

Graphs and representations

Graphs and representations

- The most important algorithmic problem on (weighted) graphs is computing shortest paths (sequences of edges with minimum sum of weights)
- A famous algorithm is Dijkstra's algorithm (1959), where a shortest path between two given vertices in a given weighted graph is computed in $O(n+m \log m)$ time
- What graph representation is assumed when we state this time bound?

Some graph problems

- Given a graph
- decide if a tour exists that visits every edge exactly once
- decide if a tour exists that visit every vertex exactly once
- find the largest completely interconnected sub-graph
- find the largest non-connected sub-graph
- determine the minimum number of colors to color the vertices so that neighbors have different colors
- Given a planar graph, determine if the vertices can be colored using two/three/four colors so that neighbors have different colors

A geometric problem

- Assume that a computer (model) can do additions, subtractions, multiplications, divisions and memory reads and writes in constant time each
- Given a simple polygon with n vertices, is it algorithmically easier to compute its area or its perimeter?

